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The goal of personalized medicine is to match the right
drugs to the right patients at the right time. Personal-
ized medicine has beenmost successful in cases where
there is a clear genetic linkage between a disease and
a therapy. This is not the case with type 1 diabetes
(T1D), a genetically complex immune-mediated disease
of b-cell destruction. Researchers over decades have
traced the natural history of disease sufficiently to use
autoantibodies as predictive biomarkers for disease
risk and to conduct successful clinical trials of disease-
modifying therapy. Recent studies, however, have high-
lighted heterogeneity associated with progression, with
nonuniform rate of insulin loss and distinct features of
the peri-diagnostic period. Likewise, there is heteroge-
neity in immune profiles and outcomes in response to
therapy. Unexpectedly, from these studies demonstrat-
ing perplexing complexity in progression and response
to therapy, new biomarker-based principles are emerg-
ing for how to achieve personalized therapies for T1D.
These include therapy timed to periods of disease ac-
tivity, use of patient stratification biomarkers to align
therapeutic target with disease endotype, pharmacody-
namic biomarkers to achieve personalized dosing and
appropriate combination therapies, and efficacy bio-
markers for “treat-to-target” strategies. These principles
provide a template for application of personalized med-
icine to complex diseases.

The goal of personalized medicine is to match the right
drugs to the right patients at the right time. Without
a direct link between genetic etiology and targeted therapy,
it is challenging to bring personalized medicine to type
1 diabetes (T1D), a genetically complex immune-mediated
disease of b-cell destruction. While heterogeneity of drug
responses in some diseases is linked to well-defined genetic
or environmental variables, this area remains underdeveloped

in T1D. Moreover, as there currently are no approved
therapeutic interventions that affect disease course, T1D
presents a compelling opportunity to optimize biologic
therapies addressing an unmet medical need. It is the very
heterogeneity of T1D, both in the natural history and in
response to therapy, that can be of use in a data-driven
approach to the treatment of disease. Potential benefits
of personalized medicine in T1D include matching drugs
to the patient population(s) most likely to benefit from
treatment, maximizing treatment benefits while mini-
mizing side effects, and minimizing trial-and-error in-
efficiencies in developing new treatments. The goal of
personalized medicine in T1D is to predict the optimal
drug, or dose of a drug, for each individual patient.

Researchers over decades have traced the natural his-
tory of T1D before and after clinical diagnosis. The data are
sufficiently robust for use of autoantibodies as predictive
biomarkers in clinical trials to slow disease progression
prior to clinical onset (1). After diagnosis, given a baseline
value of insulin secretion and age, insulin secretion a year
later can be reasonably predicted (2). Like for autoanti-
bodies, such insulin secretion data allow for standardized
approaches to clinical trial design. However, within these
compelling data is the more complex reality of variability
between individuals in natural history and response to
therapy and the uneven pattern of functional or actual
b-cell loss over time. Similarly, trials of several immune-
modifying agents with different mechanism of action gen-
erally have yielded similar clinical courses (3). Typically,
treatment is associated with a 6- to 12-month period of
disease stabilization followed by progression at a rate
similar to that in untreated subjects. Unbiased systems
approaches using peripheral blood samples from patients
in multiple clinical trials have elucidated diverse immu-
nologic mechanisms associated with good versus poor
outcome, highlighting previously unknown relationships
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between disease heterogeneity and response to therapy
(4–7). Together, these studies suggest new data-driven
approaches to the treatment of T1D and possibly other
autoimmune diseases. These strategies will be discussed
in the following sections.

Nonuniform b-Cell Loss Over Time: Accelerated
Change Is Active Disease
Studies of multiple T1D autoantibody–positive individuals
have repeatedly demonstrated impaired insulin secretion
many years prior to diagnosis. Longitudinal studies note
that for many individuals impaired b-cell function, when
measured by C-peptide response to oral glucose tolerance test
orfirst-phase insulin response to i.v. glucose, is persistent, but
stable, for many years (8,9). Often, this apparently stable
b-cell function begins to fall within 6–12 months prior to
clinical diagnosis. Importantly, this increased rate of fall
continues as individuals cross the glucose diagnostic threshold
(10), until the rate of fall of insulin secretion again appears
to level off 6–12 months later, mirroring the pattern prior to
clinical diagnosis (11). These data point to a 12- to 18-month
interval around the time of clinical diagnosis when a rapid
change in insulin secretion capacity is occurring—a period of
“active” disease in an individual providing opportunities for
personalizing therapy (Fig. 1).

If a rapid change in insulin secretion defines a period of
active disease, there are at least three hypothesis why this
could occur (Fig. 2). The window around clinical diagnosis

associated with more rapid loss of insulin secretion could
be due to an immune “flare.” Several immune therapies
administered during this time show partial efficacy
(12–17), and in the TrialNet Oral Insulin study, while the
overall results were negative, the cohort of individuals with
the most rapid progression and thus presumably with
active disease responded to therapy (18). A second hy-
pothesis posits that the acceleration in b-cell dysfunction
occurs when the system has reached a tipping point, in
which a chronic slow loss of function eventually results in
“sudden” collapse. Data supporting this concept come from
human as well as nonimmune animal models of b-cell
destruction, documenting rapid fall in secretion and in-
crease in glucose after 50% loss of b-cell mass (19,20). The
third hypothesis blends both these concepts. Rather than
this time period initiating from an immune flare of disease,
it may instead represent acceleration of b-cell injury from
any cause that in turn further promotes immune-mediated
damage.

Measures of Active Disease
b-Cell Health/Islet Function. To determine whether ac-
celeration of b-cell damage initiates the period of active
disease, alternative measures of b-cell health or islet
function may be needed to detect subtle injury. This
includes physiologic measures of functional b-cell mass
through longitudinal assessments of glucose-potentiated
arginine or glucagon secretion (21,22), markers of b-cell

Figure 1—Nonlinear progression of b-cell loss characterizes stages of T1D. The peri-diagnostic period is highlighted, reflecting a period of
accelerated b-cell dysfunction, superimposed on a slow progressive functional decline that begins prior to clinical diagnosis and continues
through the early post-diagnostic interval (“Stage 3” disease, or clinical T1D). Observations of immunological acceleration occur within this
period, presenting an opportunity for targeted immune intervention based on identification of individualized immune characteristics
associated with rapid decline—both prior to diagnosis (blue box, “prevention therapy”) and after diagnosis (green box, “intervention
therapy”). Adapted from Greenbaum et al. Strength in numbers: opportunities for enhancing the development of effective treatments
for T1D—the TrialNet experience. Diabetes 2018;67:1216–1225.
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Figure 2—Potential mechanisms accounting for a period of accelerated change in insulin secretion during the development of T1D.
Functional loss of b-cells is associated both with intrinsic properties of damaged or stressed islets and with extrinsic properties of activated
and aggressive immune responses. The interplay between these two factorsmanifests in an accelerated phase of disease activity associated
with biomarker changes in both intrinsic and extrinsic compartments and manifested by a rapid change in b-cell function. Blue ovals show
functional b-cells. Orange ovals show dead or dysfunctional b-cells. A: Hypothesis: Immune activation causes active disease. Prediction:
Immune biomarkerswill associate only with periods of b-cell change.B: Hypothesis:b-Cell injury and associated autoimmunity continue over
time. Active disease occurs due to b-cell destruction at threshold or tipping point. Prediction: No association of immune markers and active
disease. Nonlinear changes in markers of b-cell injury. C: Hypothesis: b-Cell injury from nonimmune source is primary cause of dysfunction.
Immunity is in response to tissue injury. Active disease occurs due to episodic acute (exogenous/environmental) injury. Prediction: No
association of immune markers and active disease. Markers of b-cell injury will be strongly associated with changes of b-cell function.
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injury including shifts in proinsulin/insulin (23), and
proIAPP-to-amylin ratios (24) that may indicate defects
in processing enzymes. Circulating blood measures of cell-
free DNA to indicate b-cell death have also been described
(25), although recent work with a more sensitive and
specific assay highlights that challenges remain in inter-
preting results from these tests (26). Simultaneous longi-
tudinal measures of exocrine function (27) and size or
other characteristics of the whole pancreas detected by
imaging studies (28) may provide key data for evaluation
of the temporal relationship of b-cell injury to active
disease.
Immune Measures. Evaluating whether there are im-
mune flares at any time during the progression of T1D
or in association with the peri-diagnostic period of accel-
erated dysfunction has proven challenging. Prior to clinical
diagnosis, most work has focused on autoantibodies, eval-
uating patterns of antibody types or titers over time with
progression of disease defined as worsening glucose tol-
erance. However, since insulin secretion measured by oral
glucose tolerance test or first-phase insulin response is
only moderately associated with glucose tolerance (29),
such analytic approaches may limit the ability to find an
immune change signaling active disease that manifests as
rapid change in b-cell function. Reanalysis of existing
immune biomarker data prior to diagnosis in relationship
to change in insulin secretion rather than glucose tolerance
is needed.

In contrast, studies of immune markers after T1D
diagnosis to either predict or associate disease state with
rate of loss of secretion are unlikely to reveal an immune
flare that initiates or signals the start of active disease.
Furthermore, there are few longitudinal multidimensional
immune data in individuals before, during, and after the
change in slope of insulin secretion defining active disease
occurring in the peri-diagnostic period. An additional
challenge is that blood testing and measures of insulin
secretion and glucose tolerance are customarily done at 6-
or 12-month intervals; this infrequent samplingmay result
in missing signals of active disease.

Implications for Response to Therapy
A large number of immune interventions have now been
evaluated in T1D clinical trials, and in each case, the
response of subjects receiving an active immunological
agent is highly variable. Differences in disease activity,
as outlined above, overlap in these trials with differences
in baseline and induced immune parameters. Longitudinal
multidimensional data with simultaneous assessments of
b-cell dysfunction and immune markers are limited, but
innovative clinical trial designs can help test the relation-
ship of efficacy to when therapy is administered. Prior to
clinical diagnosis, trials could use prerandomization data
to stratify those with pretreatment changes in insulin
secretion versus those with stable secretion. Or trials could
be done where the enrollment criteria require a fall of
secretion as entry criteria rather than use of glycemic

status to define cohorts—an important change since the
hallmark of disease is b-cell failure and there is only
a moderate relationship between secretion and glucose
tolerance. Aligning our understanding of these subject-
specific characteristics with opportunities for use of in-
dividualized targeted therapies is an important next step,
informed by several recent trials that are discussed below.
The more selective the entry criteria, the more challenging
trial enrollment may be. However, such practical concerns
may be offset by the potential for a greater effect in a more
targeted population, such that a smaller number of sub-
jects may be required. Alternatively, if interim markers of
drug effect(s) could be identified, shorter trials may be
possible.

T-cell autoreactivity is a major component of the im-
mune response in T1D, with activated cells expressing
markers of immune memory and self-renewal as hallmarks
of disease (30–33). Various drugs that deplete T cells or
interfere with T-cell function have been tested in T1D
clinical trials, and analysis of T-cell subsets reveals that
differences in treatment efficacy are correlated with dif-
ferential effects on different T-cell subsets. An example is
shown in Fig. 3, comparing the effect of anti–T-cell therapy
administered to subjects recently diagnosed with T1D. In
the Inducing Remission in New-onset Type 1 Diabetes with
Alefacept (T1DAL) trial (17), represented in Fig. 3A, de-
pletion of effector T cells (a subset that displays memory
markers and effector molecules indicating proinflamma-
tory properties) follows administration of alefacept, a ther-
apeutic agent that targets the CD2 molecule on these
T cells. Another T-cell subset, regulatory T cells (functional
suppressors of immune responses) is not depleted, due to
much lower expression of CD2. As a consequence, the ratio
of regulatory to effector cells is increased during each
therapeutic administration of alefacept, which corre-
sponds to the time frame in which metabolic stability,
measured by preservation of C-peptide, is observed. These
data contrast with those shown in Fig. 3B, from the Study
of Thymoglobulin to ARrest T1D (START) clinical trial
(34), in which similar subjects received administration of
antithymocyte globulin (ATG), an anti–T-cell antibody
mixture that depleted both effector and regulatory cells.
As shown, there was no change in the regulatory-to-
effector cell ratio and no preservation of C-peptide from
this therapy. The importance of preserving regulatory
T cells during anti–T-cell therapy is emphasized by the
TrialNet trial that tested a lower dose of ATG (15), which
achieved a relative sparing of regulatory cells and also
improved clinical outcomes relative to the START trial.
T cell–directed therapy in T1D may be viewed as a form of
induction regimen, depleting or modulating sufficient
effector cells to achieve transient arrest of the autoim-
mune process while potentially allowing regulatory cells
and mechanisms to restore homeostasis. Interestingly,
efficacy (measured as preservation of C-peptide) is often,
but not always, strongest in younger subjects in the trials,
suggesting a correlation with a more active disease state, as
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discussed in the previous section. This is consistent with
an interpretation that a promising way to use T-cell de-
pletion therapy could be to select subjects based on the
presence of activated effector T cells, perhaps most prev-
alent during the disease-acceleration phase described
above, while assuring that regulatory T cells are available,
and spared, to allow for their preferential survival.

T-cell immunobiology is complex, and general subset
classifications such as “regulatory” and “effector” lympho-
cytes, as cited above, do not fully reflect important func-
tional properties that may correlate with therapeutic
benefit. Examples include a helper T-cell subset known
as Tfh (follicular helper T cells), selectively targeted by
abatacept, which specialize in communication between T
and B lymphocytes supporting antibody production, and
an effector T-cell subset known as Tex (exhausted T cells),
a state induced by chronic activation that reflects low
functional capacity and correlates with response to tepli-
zumab, as discussed below.

The concept of selecting immune subset-specific ther-
apy for particular subjects is not limited to T-cell compart-
ments. A recent systems biology study in T1D using
peripheral blood transcriptome analysis identified pat-
terns of B-cell transcripts and of neutrophil transcripts

that also fit this paradigm (7). In this study, subjects
enrolled in the placebo arms of T1D clinical trials showed
increases in peripheral B-cell gene expression profiles
correlating with more rapid loss of C-peptide over the
course of 2 years after diagnosis; lower neutrophil gene
expression profiles were observed in the same samples.
This relationship was particularly strong in younger T1D
subjects, and opposite profiles were observed in older
subjects with slower progression of C-peptide loss. Strat-
ification of subjects with this B-cell profile who were
enrolled in the TrialNet clinical trial and receiving B-cell
depletion therapy with rituximab (12) showed a significant
relationship with the rate of loss of C-peptide, suggesting
that rituximab was most effective in those with high B-cell
gene expression.

In the examples summarized above, indicators of in-
creased T- and B-cell immunity correlated with age but
offer additional value for targeted therapeutic benefit.
Using young age as an indicator of suitability for these
types of immune modulation therapy is itself a way to
increase the likelihood of response but is an imprecise
strategy (35). And although fairly simple biomarkers such
as effector T-cell and B-cell profiles improve this precision,
it is likely that even more specific immune properties can

Figure 3—Frequencies of regulatory T cells (Treg) and effector T cells (Teff) following use of anti–T-cell immunomodulatory therapy correlate
with persistence or loss of insulin secretory capacity. Shown are stimulated C-peptide area under the curve (AUC) measurements from the
T1DAL trial of alefacept (top left panel) and the START trial of ATG (top right panel), documenting transient preservation of b-cell function
following alefacept treatment. The bottom panels display a ratio of the frequencies of regulatory and effector T lymphocytes in peripheral
blood during these clinical trials, illustrating a marked increase in this ratio during the period of C-peptide preservation in T1DAL but not in
START. Data are adapted from Rigby et al. (17) and Gitelman et al. (34).
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further enhance the value of biomarker stratification (36).
For example, one possible refinement indicating T-cell
target suitability may be to focus on plasticity or stem
cell–like properties of these cells, characteristics that in-
dicate potential for development into autoreactive effector
cells (37). Another potential strategy may be to use clonal
expansions as indicators of in vivo autoreactive activation,
visualized through T-cell receptor sequencing (38,39).
Functional properties of autoreactive T cells that make
them appropriate targets for directed therapy, such as
their resistance to immune regulation (40), are more
difficult to measure but likely also represent characteristics
that will identify individuals well suited for targeted
effector T-cell therapy. In addition, monitoring of the
recurrence of these types of effector cells could be very
helpful in deciding whether and when to repeat treatment
rather than delaying until further metabolic decompensa-
tion occurs. Indeed, it is possible that amplification of
resistant effector cells accumulates with age and immune
experience, providing an additional rationale for focusing
induction therapy on younger subjects and early phases of
disease.

Selection of subjects likely to respond to induction
therapy, directed by T- and/or B-cell characteristics, offers
a first step toward improving the likelihood of a clinical
response. Even with this advance, however, there remains
the equally important challenge of selecting therapies that
will maintain a beneficial response. By analogy with the
“induction, then consolidation” strategies used in cancer
chemotherapy, durable benefit in T1D immune therapy
likely will require a consolidation step following successful
induction treatment. Indeed, if induction therapy involves
lymphocyte depletion, avoiding a rebound phenomenon
from reconstituting effector cells is likely to be essential.
Maintaining therapeutic benefit may also require bio-
marker-driven patient stratification, and two distinct
types of immune profiles have been associated with suc-
cessful consolidation in previous clinical trials: CD4 T-cell
regulation and CD8 T-cell exhaustion.

As noted in the example in Fig. 3, elevation of the
regulatory-to-effector T cell ratio is a correlate of success-
ful preservation of C-peptide in the context of T cell–
targeted therapy. Interestingly, Tregs in some T1D sub-
jects have been reported to be deficient in their response to
IL2, a cytokine that supports maintenance of regulatory
function in these cells (41). This may present an oppor-
tunity to use biomarker-driven selection of therapies that
target IL2 signaling in individuals who display this type of
Treg deficiency, to enhance consolidation of therapeutic
benefit. Strategies to enhance Treg capabilities in this
context are challenging, with several potential pitfalls
such as whether the Tregs need to be targeted to particular
islet antigens, whether they will they be long-lived and
have stable function, and whether an initial induction
therapy has abrogated a hostile tissue environment that
could inhibit regulatory activity. Indeed, assessing these
types of hazards to Treg utility may provide additional

opportunities for personalization of the choice of thera-
peutic option.

A different type of consolidation strategy is suggested
by studies in T1D clinical trials of teplizumab, an anti-CD3
monoclonal antibody: In these studies, CD8 T cells acquire
an exhaustion-like phenotype after induction therapy with
teplizumab, consistent with a mechanism in which partial
agonism through the T-cell receptor triggers a cellular
program similar to an exhaustion state frequently seen
in the immune response to cancers and chronic virus
infection. This phenotype is associated with low levels
of immune function, and in clinical trials of recent-onset
T1D and secondary prevention of T1D (4,16), acquisition
of this phenotype is significantly correlated with preser-
vation of C-peptide and delay or prevention of T1D.
Furthermore, there is a strong indication that sustaining
an exhausted T-cell response is advantageous: In the
Autoimmunity-blocking Antibody for Tolerance in Re-
cently Diagnosed Type 1 Diabetes (AbATE) trial, teplizu-
mab was administered in two cycles 1 year apart. Only
subjects who responded with induction of an exhaustion
profile on both occasions had long-term favorable out-
comes, and a retrospective analysis indicated that failure to
respond to the second cycle of therapy was correlated with
the presence of anti-drug antibodies, providing a likely
explanation. This finding suggests the possibility of using
T-cell exhaustion markers or other regulatory phenotypes
(42,43) to monitor effective consolidation therapies in
individuals, potentially guiding choice of drugs and timing
of treatment to sustain a response.

There may be an interactive relationship between some
of these immune characteristics and the age dependence of
T1D progression in children with T1D (11,44). For exam-
ple, subjects in the TrialNet study of abatacept showed age-
related baseline features, characterized by elevated levels
of B cells or neutrophils, that accompanied rapid or slow
progression, respectively, in both abatacept- and placebo-
treated groups (6). Other studies from the same trial
reported alterations in T cell subsets associated with re-
sponse to treatment: A reduction in CD4 central memory
T cells (45) and positive association of baseline abundance
of circulating Treg cells was associated with slower
C-peptide decline (46) in abatacept-treated subjects. In
contrast, higher frequencies of follicular helper T cells at
baseline were associated with a poor clinical response (47).
Together, these data suggest that better therapeutic suc-
cess may be gained by targeting immunomodulatory ther-
apy in specific T1D populations defined by considering
both age and immune characteristics.

Figure 4 summarizes these opportunities to use im-
mune profiling for identification of individualized charac-
teristics that could influence choices of immune therapy in
T1D. Whether selecting subjects who could be eligible for
personalized therapy, choosing a specific type of targeted
intervention, or making a decision about repeating ther-
apy, understanding and monitoring of immunological
parameters that differ between individuals offers a way
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to evaluate the potential for tailoring intervention. In the
context of a multitude of immunologically active drug
candidates, careful evaluation of characteristics like these
should facilitate rational choices, efficient study design,
and improved likelihood of good clinical outcomes.

Personalized Pharmacodynamics
A surprising finding across multiple studies has been the
association of poor outcome with reduced pharmacody-
namic activity in some subjects. For example, subjects
resistant to treatment with abatacept showed a transient
increase in activated B cells, altered costimulatory ligand
gene expression, and reduced inhibition of anti-insulin
antibodies (6). These findings suggested nonuniform phar-
macodynamic activity of abatacept across different sub-
jects. Similarly, studies with rituximab (12) showed that
subjects with high levels of T cells showed less suppression
of de novo antibodies targeting phiX174, again indicating
suboptimal pharmacodynamic activity of rituximab treat-
ment. Finally, in the AbATE study with teplizumab (13), we
noted that responders to treatment showed more sus-
tained lymphoreduction after treatment (Fig. 5). Transient
lymphoreduction is a hallmark of teplizumab treatment
and can be considered a proximal pharmacodynamic bio-
marker for T-cell targeting. Together, these findings sug-
gest that personalized dosing of a monotherapy based on
individualized pharmacodynamic measurements might
improve efficacy of multiple biologic agents in T1D.

Individual variation in drug response is perhaps in-
evitable, and even though clinical trials generally focus on
relatively homogenous patient populations, there may still
be interindividual variation in optimal dosing. The concept
of “precision dosing” is difficult to achieve in practice, with
difficulty perhaps exacerbated when drugs developed on
older individuals are used for younger patients, as is prevalent

in T1D. One possible strategy is the implementation of
“treat-to-target” (TTT) methodologies for the use of bio-
logics in T1D. TTT is a therapeutic concept that uses
specific physiologic targets to control disease pathophys-
iology. With type 2 diabetes, TTT has been used to compare
investigational insulins with a standard insulin by titration
of insulin dosages for achievement of a prespecified treat-
ment goal (48). While, to our knowledge, TTT has not been
applied for biologics in T1D, it is conceivable that biologic
agents could be titrated to a desired clinical end point, or
even that biomarkers or pharmacodynamic measures could
be used as proxies for clinical measurements. Additionally,
as we move forward in personalizing therapy, it may be
possible to develop markers that separate generalized
immune suppression from therapeutic efficacy.

Combination Therapies
Another conceptual implication evolving from such
in-depth immunological characterization of individual out-
comes in the trials is a focus on data-driven, pathway-
targeted approaches for combination therapy in individual
patients. In the case of biologic therapies for T1D, the case
could be made for testing combinations of agents that as
monotherapies have complementary mechanisms. We will
here consider two pathways that can be targeted for
beneficial effects in T1D: B cell–T cell interactions and
CD8 T-cell exhaustion (Fig. 6).

Collaborative interactions between B cells and T cells
are essential for successful adaptive immune responses.
Therapeutically, these interactions can be modulated by
altering levels of B cells or T cells (by rituximab and
teplizumab, respectively) or by blocking cognate interac-
tions (by abatacept). One observation from mechanism of
action and resistance studies of biologic agents in T1D is
that resistance to agents thatmodify B cell–T cell interactions

Figure 4—Opportunities for individualized therapeutic decision-making using T1D immune profiles. Targeted therapeutics for particular T or
B lymphocytes, specific cytokines, or other selected immune pathways provide alternatives for disease intervention, tailored to individualized
patients. Such personalized approaches will require biomarker stratification that reflects several types of immune characteristics, examples
of which are listed here. The choice of biomarker and choice of therapeutic may be different during initial patient assessment compared with
later in the disease course, reflecting changes in the immunobiology of T1D during disease progression. Teff, effector T lymphocytes; TCR,
T-cell receptor; SCM, stem cell memory; Treg, regulatory T lymphocytes.
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may be accompanied by overproduction of a cognate cell
partner. For example, suboptimal therapy with B cell–
targeting rituximab was accompanied by elevated periph-
eral blood T-cell levels (5). Likewise, suboptimal therapy
with the T-cell costimulation blocker, abatacept, was linked
to elevated peripheral blood B cells and altered expression
of costimulatory molecules (6). In both cases, suboptimal

clinical treatment was associated with incomplete blocking
of de novo antibody production, which can be regarded as
a downstream pharmacodynamic assay. Considering these
observations in terms of a model for B cell–T cell inter-
actions (Fig. 6A) suggests that suboptimal treatment with
either single agent could be augmented using the other
agent, with a complementary mechanism of resistance.

Figure 5—The extent of lymphocyte reduction is linked to therapeutic outcome after teplizumab treatment outcome in the AbATE study.
Shown are mean lymphocyte counts 6 SE (error bars) as determined by complete blood count at various intervals after treatment with
teplizumab. Patient groups corresponding to responders (R) and nonresponders (NR) to teplizumab treatment were designated as previously
described (13). A: Complete study. Arrows represent initiation of the two treatment cycles. B: First treatment cycle. C: Second treatment
cycle. P values for individual time points: ***P value .1e-4 and ,1e-3; *P value .1e-2 and ,0.05. Unless otherwise indicated, P values
were . 0.05 and considered not significant.

Figure 6—Combination therapy options to overcome mechanisms of resistance to monotherapies. Shown are therapeutic options for T1D
based on targeting B cell–T cell interactions (A) and T-cell exhaustion (B). Black font, currently testedmonotherapies; gray font, mechanismof
resistance to monotherapy; red font, proposed combination (Combo) mechanism (B cell–T cell interactions [49] and T-cell exhaustion [4,50]);
blue font, specific combination options. IR1, inhibitory receptor-positive.
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This is the rationale underlying the planned TrialNet study
testing sequential administration of rituximab and abata-
cept (available from ClinicalTrials.gov, clinical trial reg. no.
NCT03929601). Furthermore, these studies recall early
studies of biologic agents in organ transplantation (49),
where best graft acceptance was obtained using a combi-
nation of agents blocking T-cell costimulation (abatacept)
and B-cell activation (anti-CD40LG). Although such an
agent has not yet been tested in combination with abata-
cept, organ transplantation studies suggest that this com-
bination may be beneficial.

Another pathway that may be targeted for beneficial
effects in T1D is induction of CD8 T-cell exhaustion using
the anti–CD3-targeting monoclonal antibody teplizumab
(Fig. 6B). Studies to date have not shown untoward
tolerability issues with teplizumab, suggesting that induc-
tion of T-cell exhaustion does not trigger dangerous levels
of immunosuppression. Current thinking based on studies
in cancer and chronic viral infection invokes a three-signal
model for development of T-cell exhaustion, with persis-
tent antigen load, negative costimulation, and chronic
inflammation comprising signals 1–3, respectively (50).
In this model, teplizumab likely displays agonist effects on
T-cell receptor signaling. This suggests that suboptimal
effects of teplizumab may be complemented by enhancing
one of the other signals triggering T-cell exhaustion (neg-
ative costimulation or chronic inflammation). For exam-
ple, negative costimulation could be enhanced using either
abatacept to block positive costimulation or an inhibitory
receptor agonist, such as a PD-1 agonist, for negative
signaling.

Concluding Remarks
Individual variation presents a challenge to “one-size-fits-
all” approaches to immune-based therapies for T1D. Re-
cent biomarker studies indicate new opportunities for
patient stratification based on individualized parameters,
including age and particular immune phenotypes, which
merge timing of active disease with targeted treatment
options (Table 1). Additional studies identifying biomarkers

for pharmacodynamic activity and resistance mechanisms
will enable better dosing and therapeutic combinations.
These studies presage an era of personalized therapy for
complex autoimmune diseases, with near-term opportunities
to improve study designs that will accelerate more targeted
and effective therapy for clinical use.
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